Background: Environmental stresses are the most important factors limiting crops production in worldwide. Tocopherol, belonging to family of vitamin E compounds, is an amphipathic antioxidants involved in oxidative responses. In the current study, we generated transgenic canola plants overexpressing Arabidopsis VTE1 gene (At.TC) through Agrobacterium tumefaciens system. Methods and results: The putative transgenic plants were successfully regenerated and acclimated in greenhouse conditions. The transcriptional activity of the At.TC gene was evaluated by RT-PCR. In addition, the relative gene expression analysis by qRT-PCR confirmed an increased expression pattern of the transformed gene in canola transgenic lines, with the highest level in R. Line1. Given the results, the transgenic plants, particularly H. Line1 and R. Line2 showed a lower lipid peroxidation compared to WTs under FC 30%. Moreover, two ROS scavenging enzymes including CAT and PPO were up-regulated in transgenic lines; however, no significant pattern was observed for Ascorbate Peroxidase. Also, the amount of leaf tocopherol was significantly more in all T1 lines under drought stress (FC 30%). Conclusion: Taken together, here we successfully developed transgenic lines overexpressing At.TC gene constituently throughout the plant. The results confirmed that the generated transgenic plants are resistant to drought stress, thereby paving the way toward introducing canola plants to deal with the climate change and water shortage.