Activator protein-2 (AP-2) is a transcription factor that regulates proliferation and differentiation in mammalian cells and has been implicated in the acquisition of the metastatic phenotype in several types of cancer. Herein, we examine the role of AP-2a in colon cancer progression. We provide evidence for the lack of AP-2a expression in the late stages of colon cancer cells. Re-expression of the AP-2a gene in the AP-2a-negative SW480 colon cancer cells suppressed their tumorigenicity following orthotopic injection into the cecal wall of nude mice. The inhibition of tumor growth could be attributed to the increased expression of E-cadherin and decreased expression and activity of matrix-metalloproteinase-9 (MMP-9) in the transfected cells, as well as a substantial loss of their in vitro invasive properties. Conversely, targeting constitutive expression of AP-2a in AP-2-positive KM12C colon cancer cells with small interfering RNA resulted in an increase in their invasive potential, downregulation of E-cadherin and increased expression of MMP-9. In SW480 cells, re-expression of AP-2a resulted in a fourfold increase in the activity of E-cadherin promoter, and a 5-14-fold decrease in the activity of MMP-9 promoter, indicating transcriptional regulation of these genes by AP-2a. Chromatin immunoprecipitation assay showed that re-expressed AP-2a directly binds to the promoter of E-cadherin, where it has been previously reported to act as a transcriptional activator. Furthermore, chromatin immunoprecipitation assay revealed AP-2a binding to the MMP-9 promoter, which ensued by decreased binding of transcription factor Sp-1 and changes in the recruitment of transcription factors to a distal AP-1 element, thus, contributing to the overall downregulation of MMP-9 promoter activity. Collectively, our data provide evidence that AP-2a acts as a tumor suppressor gene in colon cancer.