Immediate early genes play an essential role in cellular responses to different stimuli. Many of them are transcription factors that regulate the secondary response gene expression. Non-coding RNAs may also be involved in this regulatory cascade. In fact, they are emerging as key actors of gene expression regulation, and evidence suggests that their dysregulation may underly pathological states. We previously took a snapshot of both coding and long non-coding RNAs differentially expressed in neuronal cells after brain-derived neurotrophic factor stimulation. Among these, the transcription factor EGR1 (a well-known immediate early gene) and LINC00473 (a primate-specific long non-coding RNA) that has emerged as an interesting RNA candidate involved in neuronal function and in cancer. In this work, we demonstrated that LINC00473 gene expression kinetics resembled that of immediate early genes in SH-SY5Y and HEK293T cells under different cell stimulation conditions. Moreover, we showed that the expression of LINC00473 is under the control of the transcription factor EGR1, providing evidence for an interesting functional relationship in neuron function.