The high density lipoprotein (HDL) receptor SR-BI (scavenger receptor class B type I) mediates the selective uptake of plasma HDL cholesterol by the liver and steroidogenic tissues. As a consequence, SR-BI can inf luence plasma HDL cholesterol levels, HDL structure, biliary cholesterol concentrations, and the uptake, storage, and utilization of cholesterol by steroid hormone-producing cells. Here we used homozygous null SR-BI knockout mice to show that SR-BI is required for maintaining normal biliary cholesterol levels, oocyte development, and female fertility. We also used SR-BI͞apolipoprotein E double homozygous knockout mice to show that SR-BI can protect against early-onset atherosclerosis. Although the mechanisms underlying the effects of SR-BI loss on reproduction and atherosclerosis have not been established, potential causes include changes in (i) plasma lipoprotein levels and͞or structure, (ii) cholesterol f lux into or out of peripheral tissues (ovary, aortic wall), and (iii) reverse cholesterol transport, as indicated by the significant reduction of gallbladder bile cholesterol levels in SR-BI and SR-BI͞apolipoprotein E double knockout mice relative to controls. If SR-BI has similar activities in humans, it may become an attractive target for therapeutic intervention in a variety of diseases.High density lipoprotein (HDL)-cholesterol levels are inversely proportional to the risk for atherosclerosis (1). This may be due partly to ''reverse cholesterol transport'' (RCT), in which HDL is proposed to remove excess cholesterol from cells, including those in the artery wall (2-7), and transport it, either indirectly or directly (8, 9), to the liver for biliary secretion. HDL also can deliver cholesterol directly to steroidogenic tissues (adrenal gland, testis, ovary) for storage in cytoplasmic cholesteryl ester droplets and for steroid hormone synthesis (10-12). Thus, HDL may influence a variety of endocrine functions, including reproduction. A key mechanism of receptor-mediated direct delivery of HDL cholesteryl esters to the liver and steroidogenic tissues is selective cholesterol uptake, in which only the cholesteryl esters of the HDL particles (not the apolipoproteins) are transferred efficiently to cells (8, 9).The class B type I scavenger receptor, SR-BI, is a cellsurface HDL receptor that mediates selective lipid uptake (13-21; reviewed in refs. 22 and 23). It is most highly expressed in the liver and steroidogenic tissues, in which its activity is regulated by trophic hormones (13, 24-31). As a consequence, SR-BI is a key regulator of HDL cholesterol levels (17-21) and adrenal cholesterol stores (18). The finding that hepatic SR-BI overexpression leads to significant increases in biliary cholesterol content (17, 32) is consistent with gene-targeting studies (18,19) that suggest an important role for SR-BI in RCT. In addition to HDL, SR-BI can bind other ligands, including lipoproteins [LDL, modified LDL, very low density lipoprotein (VLDL)] and apolipoproteins (33-37), and can mediate efflux...