BACKGROUND & AIMS
Activation of the transcription factor NFκB has been associated with development of inflammatory bowel disease (IBD). COMMD1, a regulator of various transport pathways, has been shown to limit NFκB activation. We investigated the roles of COMMD1 in the pathogenesis of colitis in mice and IBD in humans.
METHODS
We created mice with specific disruption of Commd1 in myeloid cells (Mye-K/O mice); we analyzed immune cell populations and functions and expression of genes regulated by NFκB. Sepsis was induced in Mye-K/O and wild-type mice by cecal ligation and puncture or intraperitoneal injection of lipopolysaccharide (LPS), colitis was induced by administration of dextran sodium sulfate (DSS), and colitis-associated cancer was induced by administration of DSS and azoxymethane. We measured levels of COMMD1 mRNA in colon biopsies from 29 patients with IBD and 16 patients without (controls), and validated findings in an independent cohort (17 patients with IBD and 22 controls). We searched for polymorphisms in or near COMMD1 that were associated with IBD using data from the International IBD Genetics Consortium and performed quantitative trait locus analysis.
RESULTS
In comparing gene expression patterns between myeloid cells from Mye-K/O and wild-type mice, we found that COMMD1 represses expression of genes induced by LPS. Mye-K/O mice had more intense inflammatory responses to LPS and developed more severe sepsis and colitis, with greater mortality. More Mye-K/O mice with colitis developed colon dysplasia and tumors than wild-type mice. We observed reduced expression of COMMD1 in colon biopsies and circulating leukocytes from patients with IBD. We associated single nucleotide variants near COMMD1 with reduced expression of the gene and linked them with increased risk for ulcerative colitis.
CONCLUSIONS
Expression of COMMD1 by myeloid cells has anti-inflammatory effects. Reduced expression or function of COMMD1 could be involved in the pathogenesis of IBD.