We converge the disciplines of context-aware computing, human-computer interaction and pedagogic research practice to propose an agenda for the use of embedded sensing for novel learning spaces. In this case, embedded sensing is the identification and analysis of in-the moment individual, group and class level behavioural data from students engaged in physical learning activities. Our work is motivated by the challenges and opportunities for teachers inherent in the rise of the design, development and evaluation of novel learning spaces augmented with multidevice technology. We present a framework for the use of embedded sensing, its relationship related and emerging work in the fields of social learning analytics and smart learning, and a practical illustration of SOLE (Sugata Mitra's Self Organised Learning Environments). Our agenda addresses the conceptualization, data collection, and analysis of learning; zooming in on hard-to-identify individual-withingroup learning processes. For the educational researcher, we propose a contextsensitive, dynamic and situated approach that can inform analytic frameworks and development of tools for sense-making. For the teacher-inquirer, the smart teacher, we propose that this approach directly addresses issues linked to the complexity of the 'what and how' of education-based evaluation and assessment of students in unstructured and multidevice learning spaces more broadly.