Extemporize Agriculture Yield with Predictions Based on Water and Soil Properties using Multivariate Analytics and Machine Learning Algorithm
V. Sudha*,
Dr. S. Mohan
Abstract:the extensive attention of farmers to get extraordinary ideas for future crop development based on soil and water is an essential key factor of agriculture to predict data. In future farmers apply the extracts PCA (Principal component analysis) in the agriculture for crops to find best yield. The level of data is analyzed using PCA and PLS (Projection to latent structure) datasets like Crop data, Soil properties and Water properties such as Linear Regression, Multi Linear Regression, Discriminate Analysis, Par… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.