In this work, we propose a four-dimensional gauged Wess-Zumino-Witten model, obtained as a dimensional reduction from a transgression field theory invariant under the $$ \mathcal{N} $$
N
= 1 Poincaré supergroup. For this purpose, we consider that the two gauge connections on which the transgression action principle depends are given by linear and non-linear realizations of the gauge group respectively. The field content of the resulting four-dimensional theory is given by the gauge fields of the linear connection, in addition to a set of scalar and spinor multiplets in the same representation of the gauge supergroup, which in turn, correspond to the coordinates of the coset space between the gauge group and the five-dimensional Lorentz group. We then decompose the action in terms of four-dimensional quantities and derive the corresponding equations of motion. We extend our analysis to the non- and ultra- relativistic regimes.