We report on the detection of bright CO(4-3) line emission in two powerful, obscured quasars discovered in the SWIRE survey, SW022513 and SW022550 at z ≥ 3.4. We analyze the line strength and profile to determine the gas mass, dynamical mass, and the gas dynamics for both galaxies. In SW022513 we may have found the first evidence for a molecular, AGN-driven wind in the early Universe. The line profile in SW022513 is broad (FWHM = 1000 km s −1 ) and blueshifted by −200 km s −1 relative to systemic (where the systemic velocity is estimated from the narrow components of ionized gas lines, as is commonly done for AGN at low and high redshifts). SW022550 has a more regular, double-peaked profile, which is marginally spatially resolved in our data, consistent with either a merger or an extended disk. The molecular gas masses, 4×10 10 M , are large and account for <30% of the stellar mass, making these obscured QSOs as gas rich as other powerful CO emitting galaxies at high redshift, i.e., submillimeter galaxies. Our sources exhibit relatively lower star-formation efficiencies compared to other dusty, powerful starburst galaxies at high redshift. We speculate that this could be a consequence of the AGN perturbing the molecular gas.