2013
DOI: 10.1007/s00030-013-0230-5
|View full text |Cite
|
Sign up to set email alerts
|

Extended quasi-homogeneous polynomial system in $${\mathbb{R}^{3}}$$

Abstract: Abstract. In this paper we define an extended quasi-homogeneous polynomial system dx/dt = Q = Q1 + Q2 + · · · + Q δ , where Qi are some 3-dimensional quasi-homogeneous vectors with weight α and degree i, i = 1, . . . , δ. Firstly we investigate the limit set of trajectory of this system. Secondly let QT be the projective vector field of Q. We show that if δ ≤ 3 and the number of closed orbits of QT is known, then an upper bound for the number of isolated closed orbits of the system is obtained. Moreover this u… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0
2

Year Published

2016
2016
2020
2020

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 13 publications
0
0
0
2
Order By: Relevance
“…. , δ − 1) 的 (α 1 , α 2 )-拟齐次多项式, 则称 (1.2) 为拟齐次多项式向量 场 Q δ 的扩展拟齐次系统, 参见文献 [1]. 至今, 已有许多文献研究了齐次和拟齐次多项式微分系统.…”
unclassified
See 1 more Smart Citation
“…. , δ − 1) 的 (α 1 , α 2 )-拟齐次多项式, 则称 (1.2) 为拟齐次多项式向量 场 Q δ 的扩展拟齐次系统, 参见文献 [1]. 至今, 已有许多文献研究了齐次和拟齐次多项式微分系统.…”
unclassified
“…文献 [6] 证明了 4 次拟齐次且非齐次系统有 2 类中心, 并给出了它们的拓扑相图. 文 献 [1,7] 研究了 3 维扩展拟齐次系统的孤立闭轨个数的上界. 文献 [8] 研究了一类特殊的平面多项式 系统的极限环, 其向量场由 2 个具有特定权重和权指的拟齐次多项式构成, 可以将它转化为 Abel 方 程研究.…”
unclassified