Background:
Treatment failure of sepsis caused by Escherichia coli (E. Coli) is a leading cause of death of infants and children in intensive care units.
Objective:
To detect the prevalence of Extended-Spectrum Beta-Lactamase (ESBL) and carbapenemase-genes between E. coli isolates from infants and children with septicemia and to identify their antibiotic sensitivity pattern.
Methods:
This is a cross-sectional study performed on 88 patients with sepsis. The isolated E. coli were identified by Gram stain and biochemically by the Microscan automated system. ESBL and carbapenemase producing E. coli were isolated on double disk diffusion and EDTA double disk, respectively. Polymerase chain reaction for ESBL and carbapenemase producing E. coli genes were performed. Bacterial susceptibility to antibiotics was tested. The initial results were measured through the 30-days of hospital admission. IRB approved the study.
Results:
Of 88 patients with sepsis, 49 and 30 strains were ESBL producing and carbapenemase producing E. coli; respectively. Neither risk factors for infection nor clinical picture can differentiate between ESBL and carbapenemase producing E. coli. The most frequently detected gene of ESBL producing E. coli was SHV, it was more sensitive to Piperacillin/Tazobactam (90%) and cefepime (86.7%) while for carbapenemase-producing E. coli; IMP was the most frequent, its sensitivity was high to Piperacillin/Tazobactam and Ciprofloxacin (52.6% each).
Conclusion:
The commonest gene of ESBL producing E. coli is SHV whereas for carbapenemase-producing E. coli is IMP. Piperacillin/Tazobactam is the candidate drug to start in children with septicemia and suspected ESBL or carbapenemase-producing E. coli infection.