“…A source model trained with widely available 'natural' images can be transferred to a target model that will perform similar tasks but in the medical imaging domain. The learnt feature detectors of these deep architectures as a result of their low-level status can be an alternative and viable (22) MGMT state 94.9/-Grinband et al (19) MGMT state 83/84 Akkus et al (23) 1p19q codeletion status 87.7/-Grinband et al (19) 1p19q codeletion status 92/88 Bonte et al (25) Glioma grading 91.1,93.5/82,86.1 Zhou et al (27) Metastatic/glioma/meningioma 92.1/-Momeni et al (28) Oligendroglioma/astrocytoma 85/92 Afshar et al (29) Glioma/pituitary/meningioma 86.6/-Yu et al (31) EGFR mutation status 76.1/82.8 Wang et al (32) EGFR mutation status 73.9/81 Zhu et al 34Luminal A vs others -/58-65 Ha et al (35) Luminal A vs. B vs. HER2 + vs. Basal 70/87.1 Yoon et al (36) Pathological state, ER, PR, HER2 -/69.7, 97.6, 89.9, 84.2 Zhu et al (37) Occult invasive disease status -/70 Ypsilantis et al (8) Neoadjuvant chemotherapy response 73.4/66.3 Bibault et al (38) Neoadjuvant chemoradiation response 80/72 Chen et al (39) Subtype prediction 80, voting: 92.3/-Trivizakis et al (12) Primary/metastasis 83/80 Cha et al (40) Chemotherapy response -/62-77 Cha et al (41) Chemotherapy response -/62-79 Banerjee et al (42) Subtype prediction 85/-Zhou et al (43) Lymph node metastasis 72.7-93/65-92 IDH1, isocitrate dehydrogenase isozyme 1; MGMT, methylguanine methyltransferase; EGFR, epidermal growth factor receptor; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; ACC, accuracy; AUC, area under the curve.…”