2019
DOI: 10.3906/elk-1809-120
|View full text |Cite
|
Sign up to set email alerts
|

Extending a sentiment lexicon with synonym–antonym datasets: SWNetTR++

Abstract: In our previous studies on developing a general-purpose Turkish sentiment lexicon, we constructed SWNetTR-PLUS, a sentiment lexicon of 37K words. In this paper, we show how to use Turkish synonym and antonym word pairs to extend SWNetTR-PLUS by almost 33% to obtain SWNetTR++, a Turkish sentiment lexicon of 49K words. The extension was done by transferring the problem into the graph domain, where nodes are words, and edges are synonymantonym relations between words, and propagating the existing tone and polarit… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 14 publications
(2 citation statements)
references
References 19 publications
0
1
0
1
Order By: Relevance
“…Sözlük tabanlı duygu analizi, 2019 yılında hazırlanan SWNetTR++ sözlüğü kullanılarak gerçekleştirilmiştir (Sağlam, Sever, & Genç, 2019, s. 1806. Sözlük, yaklaşık olarak 49 bin Türkçe kelime ve kelime gruplarına ait yönelimleri gösteren kutup (polarity) ve yoğunluk (tone) değerlerini içermektedir.…”
Section: Analizunclassified
“…Sözlük tabanlı duygu analizi, 2019 yılında hazırlanan SWNetTR++ sözlüğü kullanılarak gerçekleştirilmiştir (Sağlam, Sever, & Genç, 2019, s. 1806. Sözlük, yaklaşık olarak 49 bin Türkçe kelime ve kelime gruplarına ait yönelimleri gösteren kutup (polarity) ve yoğunluk (tone) değerlerini içermektedir.…”
Section: Analizunclassified
“…There is no such dictionary in Turkish, while there are comprehensive predefined polarity lexicons in English, Dutch, Spanish, and Spanish. Turkish language's distinctive characteristics, such as agglutinative, negation suffixes, make the Lexicon-based approach difficult; therefore, Lexicon-based SA studies in Turkish are based on translation-dependent lexicons or have relatively narrow focuses (Saglam et al, 2019). These studies are SentiTurkNet (Dehkharghani et al, 2016) by using Turkish WordNet (Bilgin et al, 2004) and SWNetTR (Ucan, 2014).…”
Section: Sentiment Analysismentioning
confidence: 99%