2019
DOI: 10.1201/9780203756331
|View full text |Cite
|
Sign up to set email alerts
|

Extending modules

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
77
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 50 publications
(78 citation statements)
references
References 0 publications
0
77
0
1
Order By: Relevance
“…Also, we have here a direct sum of weakly supplement extending modules need not necessary weakly supplement extending. M= Z[X] ⨁Z[X] as Z[X]-module is not weakly supplement extending, because M is not extending [3] and Rad(M)=0 [11]. Recall that, a module M is distributive if for all submodule A, S and N of M, A ∩ (S + N) = (A ∩ S)+ (A ∩ N) [12].…”
Section: Corollary (217)mentioning
confidence: 99%
See 2 more Smart Citations
“…Also, we have here a direct sum of weakly supplement extending modules need not necessary weakly supplement extending. M= Z[X] ⨁Z[X] as Z[X]-module is not weakly supplement extending, because M is not extending [3] and Rad(M)=0 [11]. Recall that, a module M is distributive if for all submodule A, S and N of M, A ∩ (S + N) = (A ∩ S)+ (A ∩ N) [12].…”
Section: Corollary (217)mentioning
confidence: 99%
“…If every submodule J of M is weakly supplement of M, then a module M is said to be weakly supplemented [2]. A module M is uniform if each nonzero submodule of M is essential submodule in M [3]. A module M is ⨁-supplemented, if for any submodule N of M has a supplement submodule that is direct summand [2].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Modüller birimseldir ve bir değişmeli grup için sağ -modülü gösterecektir. Çalışmamızda açıklanmamış terminoloji ve aşağıda verilen tanımlara ilişkin ayrıntılı bilgi için [3] ve [5] kitapları okuyucuya önerilmektedir. Bir alt kümesinin (sırasıyla, bir x elemanının) bir -modülünde sağ sıfırlayıcısı (annihilator) ( ) (sırasıyla, ( )) ile gösterilecektir.…”
Section: Introductionunclassified
“…the submodule of M , the essential submodule of M , the complement submodule of M , the direct summand of M and the projection invariant submodule of M , respectively.For unknown terminology and notation, see[1,4,10,11].…”
mentioning
confidence: 99%