Purpose
Our objective was to develop novel nanocarriers (protected graft copolymer, PGC) that improve the stability of heparin binding EGF (HBEGF) and gastrin and then to use PGC-formulated HBEGF (PGC-HBEGF) and Omeprazole (+/− PGC-gastrin) for normalizing fasting blood glucose (FBG) and improving islet function in diabetic mice.
Method
HBEGF, PGC-HBEGF, Omeprazole, Omeprazole+PGC-HBEGF, Omeprazole+PGC-gastrin+PGC-HBEGF and epidermal growth factor (EGF)+gastrin were tested in multiple low dose streptozotocin diabetic mice.
Results
Omeprazole+PGC-HBEGF normalized FBG and is better than EGF+gastrin at improving islet function and decreasing insulitis. Groups treated with Omeprazole, Omeprazole+PGC-HBEGF, or EGF+gastrin have significantly improved islet function versus saline control. All animals that received PGC-HBEGF had significantly reduced islet insulitis versus saline control. Non-FBG was lower for Omeprazole+PGC-gastrin+PGC-HBEGF but Omeprazole+PGC-HBEGF alone showed better FBG and glucose tolerance.
Conclusions
Omeprazole+PGC-HBEGF provides a sustained exposure to both EGFRA and gastrin, improves islet function, and decreases insulitis in multiple low dose streptozotocin diabetic mice. Although HBEGF or EGF elevates non-FBG, it facilitates a reduction of insulitis and, in the presence of Omeprazole, provides normalization of FBG at the end of treatment. The study demonstrates Omeprazole and PGC-HBEGF is a viable treatment for diabetes.