In real world applications, data are subject to ambiguity due to several factors; fuzzy sets and fuzzy numbers propose a great tool to model such ambiguity. In case of hesitation, the complement of a membership value in fuzzy numbers can be different from the non-membership value, in which case we can model using intuitionistic fuzzy numbers as they provide flexibility by defining both a membership and a non-membership functions. In this article, we consider the intuitionistic fuzzy linear programming problem with intuitionistic polygonal fuzzy numbers, which is a generalization of the previous polygonal fuzzy numbers found in the literature. We present a modification of the simplex method that can be used to solve any general intuitionistic fuzzy linear programming problem after approximating the problem by an intuitionistic polygonal fuzzy number with n edges. This method is given in a simple tableau formulation, and then applied on numerical examples for clarity.