[1] Infiltration is a key process in aspects of hydrology, agricultural and civil engineering, irrigation design, and soil and water conservation. It is complex, depending on soil and rainfall properties and initial and boundary conditions within the flow domain. During the last century, a great deal of effort has been invested to understand the physics of infiltration and to develop quantitative predictors of infiltration dynamics. Jean-Yves Parlange and Wilfried Brutsaert have made seminal contributions, especially in the area of infiltration theory and related analytical solutions to the flow equations. This review retraces the landmark discoveries and the evolution of the conceptual approaches and the mathematical solutions applied to the problem of infiltration into porous media, highlighting the pivotal contributions of Parlange and Brutsaert. A historical retrospective of physical models of infiltration is followed by the presentation of mathematical methods leading to analytical solutions of the flow equations. This review then addresses the time compression approximation developed to estimate infiltration at the transition between preponding and postponding conditions. Finally, the effects of special conditions, such as the presence of air and heterogeneity in soil properties, on infiltration are considered.