A suitable replacement model for random lifetimes is extended to the context of past lifetimes. At a fixed time u an item is planned to be replaced by another one having the same age but a different lifetime distribution. We investigate the past lifetime of this system, given that at a larger time t the system is found to be failed. Subsequently, we perform some stochastic comparisons between the random lifetimes of the single items and the doubly truncated random variable that describes the system lifetime. Moreover, we consider the relative ratio of improvement evaluated at x ∈ ( u , t ) , which is finalized to measure the goodness of the replacement procedure. The characterization and the properties of the differential entropy of the system lifetime are also discussed. Finally, an example of application to the firing activity of a stochastic neuronal model is provided.