RésuméLe présent texte, suite de l'article paru en 2004 aux Annales de l'Institut Fourier, définit et établit les propriétés de base des orbifoldes géométriques, essentielles pour la compréhension de la structure birationnelle des variétés projectives ou Kählériennes compactes, et qui permettent d'en donner une vue synthétique globale très simple. Les démonstrations données reposent cependant sur les techniques usuelles de la géométrie algébrique/analytique. De nombreuses questions ou conjectures sont également formulées à leur sujet.Bien que les orbifoldes géométriques ne soient autres que les paires (X|Δ) du LMMP (avec éX compacte et Kähler), leur origine et leurs motivations initiales sont entièrement différentes : le diviseur orbifolde Δ, analogue à un diviseur de ramification, encode les fibres multiples d'une fibration de base X, et (X|Δ) apparait comme un revêtement de X qui ramifie exactement (multiplicités comprises) au-dessus de Δ, et élimine les fibres multiples en codimension 1, par changement de base virtuel. Cette origine géométrique permet de munir naturellement les orbifoldes géométriques des invariants usuels des variétés : morphismes et applications biméromorphes, formes différentielles, groupe fondamental et revêtement universel, pseudométrique de Kobayashi, corps de définition et points rationnels. On s'attend à ce que leur géométrie qualitative soit la même que celle des variétés ayant des invariants similaires. Les plus élémentaires de ces propriétés géométriques sont établies ici, par adaptation directe des arguments utilisés pour les variétésLes fibrations possédent, dans la catégorie biméromorphe des orbifoldes géométriques, des propriétés d'extension (ou « d'additivité ») non satisfaites dans la catégorie des variétés sans structure orbifolde, ce qui permet d'exprimer certains invariants de l'espace total comme extension (ou « somme ») de ceux de la fibre générale orbifolde, et de la base orbifolde. Par exemple, la suite des groupes fondamentaux est toujours exacte dans la catégorie orbifolde. De même, l'espace total d'une fibration est spéciale (voir ci-dessous) si la fibre orbifolde générique et la base orbifode le sont. En fait, les orbifoldes géométriques ont été initialement introduites précisément pour remédier à ce défaut d'additivité.Une conséquence naturelle de ces constructions est l'introduction d'une classe nouvelle : les orbifoldes géométriques spéciales, qui sont celles qui ne dominent méromorphiquement aucune orbifolde géométrique de type général et de dimension positive. Ces orbifoldes spéciales sont exactement celles qui sont (canoniquement) décomposées (conditionnellement en une variante orbifolde de la conjecture Cn,m) en tours de fibrations ayant des fibres telles que, ou bien κ = 0, ou bien κ+ = −∞. Ces dernières sont celles ne dominant pas d'orbifolde de dimension strictement positive et telle que κ ≥ 0. Conjecturalement, ce sont celles qui sont rationnellement connexes dans la catégorie orbifolde. La connexité rationnelle est définie de la façon habituelle, une fois les courbes rationnelles orbifoldes définies.Cette décomposition permet de relever aux orbifoldes spéciales certaines propriétés connues ou conjecturées pour les orbifoldes telles que κ+ = −∞ ou κ = 0, et elle conduit à conjecturer, entre autres, que le fait d'être spéciale est la caractérisation exacte de certaines propriétés importantes (telles que la densité potentielle ou l'annulation de la pseudométrique de Kobayashi). Elles jouent conjecturalement un rôle central dans d'autres problèmes, tels que les espaces de paramètre des familles de variétés canoniquement polarisées.Enfin, nous construisons, sur toute orbifolde géométrique (X|Δ), une unique fibration caractérisée par le fait que ses fibres orbifoldes sont spéciales, et sa base orbifolde de type général. Cette fibration scinde donc l'orbifolde en ses parties antithétiques: spéciale (les fibres) et de type général (la base) au niveau géométrique, mais aussi conjecturalement aux niveaux arithmétique et hyperbolique.De nombreux problèmes essentiels relatifs à l'équivalence biméromorphe dans cette catégorie orbifolde restent néammoins ouverts (en particulier, leur extension aux orbifoldes Log-terminales ou Log-canoniques).On trouvera dans l'article à paraitre dans les proceedings de la conférence de Schiermonnikoog une version abrégée en anglais du présent texte, ainsi que des compléments sur les relations avec le LMMP.