The effect of imperfect interface on the coupled extensional and flexural motions in a two-layer elastic plate is investigated from views of theoretical analysis and numerical simulations. A set of full two-dimensional equations is obtained based on Mindlin plate theory and shear-slip model, which concerns the interface elasticity and tangential discontinuous displacements across the bonding imperfect interface. Some numerical examples are processed, including the propagation of straight-crested waves in an unbounded plate, the buckling of a finite plate, as well as the deflection of a finite plate under uniform load. It is revealed that the bending-evanescent wave in the composites with a perfect interface eventually cuts-on to a propagating shear-like wave with cutoff frequency when the two sublayers imperfectly bonded. The similar phenomenon has been verified once again for coupled face-shear and thickness-shear waves. It also has been pointed out that the interfacial parameter has a great influence on the performance of static buckling, in which the outcome can be reduced to classical buckling load of a simply supported plate when the interface is perfect.