Noncommutative Ward's conjecture is a noncommutative version of the original Ward's conjecture which says that almost all integrable equations can be obtained from anti-selfdual Yang-Mills equations by reduction. In this paper, we prove that wide class of noncommutative integrable equations in both (2 + 1)-and (1 + 1)-dimensions are actually reductions of noncommutative anti-self-dual Yang-Mills equations with finite gauge groups, which include noncommutative versions of Calogero-Bogoyavlenskii-Schiff eq., Zakharov system, Ward's chiral and topological chiral models, (modified) Korteweg-de Vries, NonLinear Schrödinger, Boussinesq, N-wave, (affine) Toda, sine-Gordon, Liouville, Tzitzéica, (Ward's) harmonic map eqs., and so on. This would guarantee existence of twistor description of them and the corresponding physical situations in N=2 string theory, and lead to fruitful applications to noncommutative integrable systems and string theories. Some integrable aspects of them are also discussed.