The goal of cancer therapy remains as the long-term eradication of tumor cells without adverse effects on normal tissue. Conventional approaches utilizing chemotherapy and radiotherapy are limited by both their toxicity and lack of specificity. In recent years, investigators have carried out several studies designed to evaluate whether human tumor-associated antigens (TAAs) can be exploited as targets for immunotherapy, specifically for human cancer vaccine development. A major limitation in immunotherapy studies of human cancer is the general lack of appropriate preclinical models. Clinical studies can be difficult to implement, particularly when a clear understanding of the potential efficacy, limitation, and safety of an immunotherapeutic strategy is not available from relevant animal investigations. However, mice carrying a transgene for a human tumor self-antigen may provide a more acceptable experimental model in which knowledge about immunotherapeutic strategies aiming at the TAA of interest can be enhanced prior to initiating clinical trials. Since the different strategies in experimental immunotherapy of cancer have been directed to activate different immune system components, a variety of transgenic mouse models have been generated expressing either TAA, human leukocyte antigen (HLA), oncogene, or immune effector cell molecules. These models may serve as an excellent platform for the identification of novel targets for immunotherapy as well as to evaluate the efficacy of targeted therapies and will lead to the development of clinical trials for cancer patients. In this unit, a brief overview of the generation and study of different vaccine approaches in carcinoembryonic antigen (CEA) transgenic mouse models and the experimental findings in mouse models that spontaneously develop gastrointestinal tumors and express the CEA transgene is provided.