We developed user-friendly software that generates stimulation profiles by using user-customized model-based control of walking. The model is a multi-segment structure with pin and ball joints. A pair of an agonist and an antagonistic muscles acts at each joint. Each muscle is modeled by a three-compartment multiplicative model. The control is based on optimization that uses a cost function that minimizes the tracking error of the joint angles and levels of muscles activations. The inputs to the simulation are trajectories and user characteristic model parameters. The outputs of the simulation are levels of muscle activations vs. time. The software allows for interactive testing of various walking trajectories and model parameters since the simulation is integrated into a database of individuals and reference trajectories. The simulation was realized in the MatLab environment with multiple windows graphical user interface. Here we present an example: stimulation patterns for the shank-foot system that is applicable for walking control in hemiplegic individuals.