BackgroundPelvic fracture combined with massive bleeding (PFCMB) is a complex issue in clinical practice. Currently, the use of angiography and embolization for the treatment of PFCMB obtains good results. The aim of this study is to observe the effects of early internal iliac artery embolization on the SIRS in dogs with simulated-pelvic-fracture combined with massive bleeding.MethodsTwenty adult dogs were randomly divided into an embolization group (EG) and a control group (CG). For the two groups, heart rate, respiratory rate and body temperature and other physiological variables were measured, and IL-6, TNF-α and arterial blood gas levels were monitored. These variables were assayed every 30 min until death in the CG, while dogs in the EG underwent arterial angiography after 60 min of modeling. The internal iliac artery was embolized on the injured side.ResultsThe average time to SIRS in the CG was 3.56 h, occurring at a rate of 90 % (9/10) within 24 h, with a mortality rate of 50 % (5/10); the average time to SIRS for the EG was 5.33 h, occurring at a rate of 30 % (3/10) within 24 h, with a mortality rate of 10 % (1/10). When SIRS occurred in the EG, the mean plasma IL-6 level was 52.66 ± 7.38 pg/ml and the TNF-α level was 11.45 ± 2.72 ng/ml, showing a significant difference with those of the CG (P < 0.05). In the two groups, the respiratory rate and leukocyte levels were higher at each monitored time after modeling than those before modeling; the mean arterial pressure, levels of hemoglobin and oxygen partial pressure were significantly lower at each time point after modeling than those before modeling except for the mean arterial pressure at 0 h in EG; the platelet levels at 4 and 8 h were higher than those before modeling; and the differences were statistically significant (P < 0.05). In the EG, the mean arterial pressure, heart rate, respiratory rate and hemoglobin levels at 2 , 4 and 8 h were lower than those at 0 h; the levels of leukocytes, platelets and carbon dioxide partial pressure at 4 and 8 h after modeling were higher than those at 0 h, and the differences were statistically significant (P < 0.05, P < 0.01); in the CG after modeling, the mean arterial pressure, levels of hemoglobin and carbon dioxide partial pressure at 2, 4 and 8 h were lower than those at 0 h; the levels of heart rate and leukocytes were higher than those before modeling; the respiratory rate and platelet levels at 4 and 8 h were higher than those at 0 h; and the differences were statistically significant (P < 0.05). The levels of the mean arterial pressure and hemoglobin at 4 and 8 h and the pH values at 8 h after modeling in the EG were significantly higher than those in the CG, while the heart rate and respiratory rate at 4 and 8 h were significantly lower than those in the CG. The pH values at 8 h after modeling were significantly lower than those of the other monitored times in the CG (P < 0.05, P < 0.01). The two groups had elevated levels of alkaline phosphatase after injury induction.ConclusionThrough the use of an on-...