Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Advanced intraoperative MR images (ioMRI) acquired during the resection of pediatric brain tumors could offer additional physiological information to preserve healthy tissue. With this work, we aimed to develop a protocol for ioMRI with increased sensitivity for arterial spin labeling (ASL) and diffusion MRI (dMRI), optimized for patient positioning regularly used in the pediatric neurosurgery setting. For ethical reasons, ASL images were acquired in healthy adult subjects that were imaged in the prone and supine position. After this, the ASL cerebral blood flow (CBF) was quantified and compared between both positions. To evaluate the impact of the RF coils setups on image quality, we compared different setups (two vs. four RF coils) by looking at T1‐weighted (T1w) signal‐to‐noise ratio (SNR) and contrast‐to‐noise ratio (CNR), as well as undertaking a qualitative evaluation of T1w, T2w, ASL, and dMR images. Mean ASL CBF did not differ between the surgical prone and supine positions in any of the investigated regions of interest or the whole brain. T1w SNR (gray matter: p = 0.016, 34% increase; white matter: p = 0.016, 32% increase) and CNR were higher (p = 0.016) in the four versus two RF coils setups (18.0 ± 1.8 vs. 13.9 ± 1.8). Qualitative evaluation of T1w, T2w, ASL, and dMR images resulted in acceptable to good image quality and did not differ statistically significantly between setups. Only the nonweighted diffusion image maps and corticospinal tract reconstructions yielded higher image quality and reduced susceptibility artifacts with four RF coils. Advanced ioMRI metrics were more precise with four RF coils as the standard deviation decreased. Taken together, we have investigated the practical use of advanced ioMRI during pediatric neurosurgery. We conclude that ASL CBF quantification in the surgical prone position is valid and that ASL and dMRI acquisition with two RF coils can be performed adequately for clinical use. With four versus two RF coils, the SNR of the images increases, and the sensitivity to artifacts reduces.
Advanced intraoperative MR images (ioMRI) acquired during the resection of pediatric brain tumors could offer additional physiological information to preserve healthy tissue. With this work, we aimed to develop a protocol for ioMRI with increased sensitivity for arterial spin labeling (ASL) and diffusion MRI (dMRI), optimized for patient positioning regularly used in the pediatric neurosurgery setting. For ethical reasons, ASL images were acquired in healthy adult subjects that were imaged in the prone and supine position. After this, the ASL cerebral blood flow (CBF) was quantified and compared between both positions. To evaluate the impact of the RF coils setups on image quality, we compared different setups (two vs. four RF coils) by looking at T1‐weighted (T1w) signal‐to‐noise ratio (SNR) and contrast‐to‐noise ratio (CNR), as well as undertaking a qualitative evaluation of T1w, T2w, ASL, and dMR images. Mean ASL CBF did not differ between the surgical prone and supine positions in any of the investigated regions of interest or the whole brain. T1w SNR (gray matter: p = 0.016, 34% increase; white matter: p = 0.016, 32% increase) and CNR were higher (p = 0.016) in the four versus two RF coils setups (18.0 ± 1.8 vs. 13.9 ± 1.8). Qualitative evaluation of T1w, T2w, ASL, and dMR images resulted in acceptable to good image quality and did not differ statistically significantly between setups. Only the nonweighted diffusion image maps and corticospinal tract reconstructions yielded higher image quality and reduced susceptibility artifacts with four RF coils. Advanced ioMRI metrics were more precise with four RF coils as the standard deviation decreased. Taken together, we have investigated the practical use of advanced ioMRI during pediatric neurosurgery. We conclude that ASL CBF quantification in the surgical prone position is valid and that ASL and dMRI acquisition with two RF coils can be performed adequately for clinical use. With four versus two RF coils, the SNR of the images increases, and the sensitivity to artifacts reduces.
Background Vascular access is a mainstay of pediatric critical care. The selection of the route of access and equipment used will depend on patient- and provider-specific factors, which constantly need revision to achieve more effective assessment and management. Objective To evaluate the use, indication, and outcome of different vascular access modalities in critically ill children in the Emergency Pediatric Intensive Care Unit (ER-PICU) of a tertiary university hospital. Patients and methods This cross-sectional descriptive study was based on data collected by reviewing all modes of vascular access used for 168 consecutive patients admitted to ER-PICU during a 6-month period from May to October 2020. Results Among the study group (n = 168), there were 92 males (54.8%) and 76 females (45.2%). The median age of cases was 18 months. 333 vascular access devices were observed: 219 peripheral (65.8%) and 114 central catheters (34.2%). Catheters lasted a total of 1920 catheter days. Central venous catheters lasted significantly more than peripheral lines (P < 0.001); median of 8.5 and 3 days, respectively. The incidence of peripheral line complications (35.2%) was found significantly higher compared to central venous catheters (22.8%) (P. = 0.021). Longer dwell time of central access was associated with a higher incidence of catheter-related bloodstream infection. The incidence of catheter-related bloodstream infection was 9.05 per 1000 catheter days. Mortality rate was 24.4%. Conclusions Despite having lower incidence of complications than peripheral lines, central venous catheters’ complications are considered more serious. Dwell time of central venous catheters (CVC) should be revised daily to avoid the occurrence of infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.