Background
Patients undergoing colectomy are at risk of numerous major complications. However, existing binary risk stratification models do not predict when a patient may be at highest risks of each complication. Accurate prediction of the timing of complications facilitates targeted, resource-efficient monitoring. We sought to develop and internally validate Cox proportional hazards models to predict time-to-complication of major complications within 30 days after elective colectomy.
Methods
We studied a retrospective cohort from the multicentered American College of Surgeons National Surgical Quality Improvement Program procedure-targeted colectomy dataset. Patients aged 18 years or above, who underwent elective colectomy between January 1, 2014 and December 31, 2019 were included. A priori candidate predictors were selected based on variable availability, literature review, and multidisciplinary team consensus. Outcomes were mortality, hospital readmission, myocardial infarction, cerebral vascular events, pneumonia, venous thromboembolism, acute renal failure, and sepsis or septic shock within 30 days after surgery.
Results
The cohort consisted of 132145 patients (mean ± SD age, 61 ± 15 years; 52% females). Complication rates ranged between 0.3% (n = 383) for cardiac arrest and acute renal failure to 5.3% (n = 6986) for bleeding requiring transfusion, with readmission rate of 8.6% (n = 11415). We observed distinct temporal patterns for each complication: the median [quartiles] postoperative day of complication diagnosis ranged from 1 [0, 2] days for bleeding requiring transfusion to 12 [6, 18] days for venous thromboembolism. Models for mortality, myocardial infarction, pneumonia, and renal failure showed good discrimination with a concordance > 0.8, while models for readmission, venous thromboembolism, and sepsis performed poorly with a concordance of 0.6 to 0.7. Models exhibited good calibration but ranges were limited to low probability areas.
Conclusions
We developed and internally validated time-to-event prediction models for complications after elective colectomy. Once further validated, the models can facilitate tailored monitoring of high risk patients during high risk periods.
Trial registration
Clinicaltrials.gov (NCT05150548; Principal Investigator: Janny Xue Chen Ke, M.D., M.Sc., F.R.C.P.C.; initial posting: November 25, 2021)