The accuracy of cosmic ray observations by the Large High Altitude Air Shower Observatory Wide Field-of-View Cherenkov/Fluorescence Telescope Array (LHAASO-WFCTA) is influenced by variations in aerosols in the atmosphere. The solar photometer (CE318-T) is extensively utilized within the Aerosol Robotic Network as a highly precise and reliable instrument for aerosol measurements. With this CE318-T 23, 254 sets of valid data samples over 394 days from October 2020 to October 2022 at the LHAASO site were obtained. Data analysis revealed that the baseline Aerosol Optical Depth (AOD) and Ångström Exponent (AE) at 440–870 nm (AE440–870nm) of the aerosols were calculated to be 0.03 and 1.07, respectively, suggesting that the LHAASO site is among the most pristine regions on Earth. The seasonality of the mean AOD is in the order of spring > summer > autumn = winter. The monthly average maximum of AOD440nm occurred in April (0.11 ± 0.05) and the minimum was in December (0.03 ± 0.01). The monthly average of AE440–870nm exhibited slight variations. The seasonal characterization of aerosol types indicated that background aerosol predominated in autumn and winter, which is the optimal period for the absolute calibration of the WFCTA. Additionally, the diurnal daytime variations of AOD and AE across the four seasons are presented. Our analysis also indicates that the potential origins of aerosol over the LHAASO in four seasons were different and the atmospheric aerosols with higher AOD probably originate mainly from Northern Myanmar and Northeast India regions. These results are presented for the first time, providing a detailed analysis of aerosol seasonality and origins, which have not been thoroughly documented before in this region, also enriching the valuable materials on aerosol observation in the Hengduan Mountains and Tibetan Plateau.