Some grouping is necessary when constructing a Leslie matrix model because it involves discretizing a continuous process of births and deaths. The level of grouping is determined by the number of age classes and frequency of sampling. It is largely unknown what is lost or gained by using fewer age classes, and I address this question using aggregation theory. I derive an aggregator for a Leslie matrix model using weighted least squares, determine what properties an aggregated matrix inherits from the original matrix, evaluate aggregation error, and measure the influence of aggregation on asymptotic and transient behaviors. To gauge transient dynamics, I employ reactivity of the standardized Leslie matrix. I apply the aggregator to 10 Leslie models developed for animal populations drawn from a diverse set of species. Several properties are inherited by the aggregated matrix: (a) it is a Leslie matrix; (b) it is irreducible whenever the original matrix is irreducible; (c) it is primitive whenever the original matrix is primitive; and (d) its stable population growth rate and stable age distribution are consistent with those of the original matrix if the least squares weights are equal to the original stable age distribution. In the application, depending on the population modeled, when the least squares weights do not follow the stable age distribution, the stable population growth rate of the aggregated matrix may or may not be approximately consistent with that of the original matrix. Transient behavior is lost with high aggregation.