Wild medicinal plants are prominent in the field of Traditional Chinese Medicine (TCM), but their availability is being impacted by human activities and ecological degradation in China. To ensure sustainable use of these resources, it is crucial to scientifically plan areas for wild plant cultivation. Thesium chinense, a known plant antibiotic, has been overharvested in recent years, resulting in a sharp reduction in its wild resources. In this study, we employed three atmospheric circulation models and four socio-economic approaches (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) to investigate the primary environmental factors influencing the distribution of T. chinense. We also examined changes in its suitable area using the Biomod2 package. Additionally, we utilized the PLUS model to project and analyze future land use changes in climate-stable regions for T. chinense. Our planning for wild tending areas of T. chinense was facilitated by the ZONATION software. Over the next century, the climate-stable regions for T. chinense in China is approximately 383.05 × 104 km2, while the natural habitat in this region will progressively decline. Under the current climate conditions, about 65.06% of the habitats in the high suitable areas of T. chinense are not affected by future land use changes in China. Through hotspot analysis, we identified 17 hotspot cities as ideal areas for the wild tending of T. chinense, including 6 core hotspot cities, 6 sub-hotspot cities, and 5 fringe hotspot cities. These findings contribute to a comprehensive research framework for the cultivation planning of T. chinense and other medicinal plants.