The aim of this study was to characterize the extracellular polysaccharides (EPS) released by a freshwater Thalassiosira sp. (Bacillariophyceae) and evaluate their degradation by heterotrophic microbial populations from the same habitat of Thalassiosira sp., a tropical eutrophic reservoir. The EPS were purified by anion exchange column chromatography, the monosaccharide composition was determined by GC, and the linkages of the monosaccharides by GC-MS. The EPS is a mannose-rich heteropolysaccharide composed of two different acidic fractions. Both of these fractions are composed of mannose, rhamnose, fucose, xylose, galactose, glucose, glucuronic acid, and N-acetyl glucosamine but with different proportions. N-acetyl galactosamine occurs only in fraction 1 and galacturonic acid only in fraction 2. We monitored the concentrations of the monosaccharides in the EPS during its degradation using pulse amperometric detection in an HPLC. The decay patterns of the monosaccharides were varied and the deoxy sugars, fucose and rhamnose, were degraded at a slower rate than the other components, increasing their relative concentrations and the hydrophobic feature of the EPS. The possibility of a selective degradation, which enhances the stickiness of the EPS, promoting transparent exopolymeric particles and aggregate formation, is discussed based on the literature data.