Tryptophan metabolism by the kynurenine pathway (KP) is important to the pathogenesis of inflammatory, infectious, and degenerative diseases. The 3-hydroxykynurenine (3-HK) branch of the KP is activated in macrophages and microglia, leading to the generation of 3-HK, 3-hydroxyanthranilic acid (3-HAA), and quinolinic acid, which are considered neurotoxic owing to their free radical-generating and N-methyl-D-aspartic acid receptor agonist activities. We investigated the role of 3-HAA in inflammatory and antioxidant gene expression and neurotoxicity in primary human fetal central nervous system cultures treated with cytokines (IL-1 with or without interferon-␥) or with Toll-like receptor ligands mimicking the proinflammatory central nervous system environment. Results were analyzed by microarray, Western blot, immunostain, enzyme-linked immunosorbent assay, and neurotoxicity assays. 3-HAA suppressed glial cytokine and chemokine expression and reduced cytokine-induced neuronal death. 3-HK also suppressed cytokineinduced neuronal death. Unexpectedly, 3-HAA was highly effective in inducing in astrocytes the expression of hemeoxygenase-1 (HO-1), an antioxidant enzyme with anti-inflammatory and cytoprotective properties. Indoleamine-2,3-dioxygenase (IDO) is an interferon (IFN)-␥-inducible, rate-limiting enzyme in the kynurenine pathway (KP) of tryptophan metabolism generating various downstream metabolites collectively termed "kynurenines" 1 ( Figure 1). This process is compartmentalized due to cell-specific expression of the KP enzymes. For example, kynurenine monooxygenase (KMO) is expressed in macrophages and microglia, 2-4 whereas kynurenine aminotransferase II (KAT II) is present in astrocytes.5 A well-appreciated biological activity of IDO is T-cell suppression. IDO expressed in antigen-presenting cells (dendritic cells, macrophages, and microglia) can