Our recent data showed that activation of protease-activated receptor (PAR)-1 and PAR-2 in rat astrocytes not only evokes calcium signaling, but also regulates the release of the chemokine growth-regulated oncogene/cytokine-induced neutrophil chemoattractant-1 (GRO/CINC-1), a counterpart of the human GRO. This chemokine provides a feedback to protect astrocytes from toxic insults. Activated PAR-1 and PAR-2 were strong stimuli to induce the release of GRO/ CINC-1. The effect was comparable to that induced by TNF-a. However, the role of calcium in the PAR-induced GRO/CINC-1 secretion remains unknown. Here, we found that the pharmacological blockade of either calcium release from the intracellular stores, or influx from the extracellular space, increased PAR-1-and PAR-2-induced GRO/CINC-1 secretion. Under calcium-free conditions, the basal mRNA level of GRO/CINC-1 was clearly increased. Further studies revealed that the intracellular GRO/CINC-1 protein level was slightly increased by treatment with thrombin or TRag in calcium-free conditions. However, the amount of protein synthesized was largely reduced in the absence of extracellular calcium as compared to that under normal calcium conditions. Importantly, we found that the intracellularly formed GRO/CINC-1 was not secreted into the cell culture supernatant under calcium-free conditions. These data suggest a dual role of calcium. On the one side, an increase in cytosolic calcium negatively regulates PAR-induced GRO/CINC-1 gene expression in rat astrocytes, but on the other side, the basal level of calcium is the pre-requisite for GRO/CINC-1 protein synthesis and secretion.