miRNA are a class of evolutionarily conserved non-coding 19-to 22-nt regulatory RNA. They affect various cellular functions through modulating the transcriptional and post-transcriptional levels of their target mRNA by changing the stability of protein-coding transcripts or attenuating protein translation. miRNA were discovered in the early 1990s, and they have been the focus of new research in both basic and clinical medical sciences. Today, it has become clear that specific miRNA are linked to the pathogenesis of respiratory diseases, as well as cancer and cardiovascular disease. In addition, EV, including exosomes, which are small membrane-bound vesicles secreted by cells, were found to contain various functional miRNA that can be used for diagnostic and therapeutic purposes. As body fluids, such as blood and respiratory secretions, are major miRNA sources in the body, EV carrying extracellular miRNA are considered potentially useful for the diagnosis and assessment of pathological conditions, as well as the treatment of respiratory or other diseases. Although research in the field of lung cancer is actively progressing, studies in other respiratory fields have emerged recently as well. In this review, we provide an update in the topics of miRNA and EV focused on airway inflammatory diseases, such as asthma and COPD, and explore their potential for clinical applications on respiratory diseases.