X-ray holography is a type of coherent diffractive imaging where the phase information is physically encoded in the diffraction pattern by means of interference with a reference beam. The image of the diffracting specimen is obtained by a single Fourier transform of the interference pattern. X-ray holography is particularly well-suited for high resolution dynamic imaging because, intrinsically, the reconstructed image does not drift and the images show high contrast. Therefore, the motion of features between two images can be determined with a precision of better than 3 nm, as demonstrated recently. In this chapter, the technical aspects of X-ray holography are discussed from an end user perspective, focusing on what is required to obtain a high quality image in a short time. Specifically, the chapter discusses the key challenges of the technique, such as sample design and fabrication, beam requirements, suitable end stations, and how to implement pump-probe dynamic imaging. Good imaging parameters were found using simulations and experiments, and it is demonstrated how a deviation from the optimum value affects the image quality.