2014 IEEE International Conference on Big Data (Big Data) 2014
DOI: 10.1109/bigdata.2014.7004344
|View full text |Cite
|
Sign up to set email alerts
|

Extracting discriminative shapelets from heterogeneous sensor data

Abstract: We study the problem of identifying discriminative features in Big Data arising from heterogeneous sensors. We highlight the heterogeneity in sensor data from engineering applications and the challenges involved in automatically extracting only the most interesting features from large datasets. We formulate this problem as that of classification of multivariate time series and design shapelet-based algorithms for this task. We design a novel approach, called Shapelet Forests (SF), which combines shapelet extra… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
9
0
1

Year Published

2016
2016
2024
2024

Publication Types

Select...
4
3
1

Relationship

1
7

Authors

Journals

citations
Cited by 20 publications
(10 citation statements)
references
References 24 publications
(61 reference statements)
0
9
0
1
Order By: Relevance
“…There are a few approaches (such as [2,3,8]), which propose extensions of the univariate shapelet extraction method for multivariate use cases, but all of them make the assumption that shapelets can be extracted from different sensors independently of each other. This assumption does not hold for real-world oilfield data where one sensor may affect the reading of other sensors (e.g.…”
Section: Introductionmentioning
confidence: 99%
“…There are a few approaches (such as [2,3,8]), which propose extensions of the univariate shapelet extraction method for multivariate use cases, but all of them make the assumption that shapelets can be extracted from different sensors independently of each other. This assumption does not hold for real-world oilfield data where one sensor may affect the reading of other sensors (e.g.…”
Section: Introductionmentioning
confidence: 99%
“…Despite the existence of many other approaches for time series classification [38], we use shapelets in our work, as (i) they find local and discriminative features from the data, (ii) they impose no assumptions on the nature of the data unlike autoregressive or ARIMA time series models [38,39] and they work even on non-stationary time series, (iii) they work on data instances of different lengths (unlike popular classifiers such as support vector machines, feed-forward neural networks, and random forests in their standard forms), (iv) they are easy to interpret and visualize for domain experts, and (v) they have been shown to be more accurate than other methods for some datasets [11,12,15,18,[20][21][22][23][24]27,39].…”
Section: Figure 2 a Shapelet Found From Our Datasetmentioning
confidence: 99%
“…We consider a binary (two-class) classification scenario. Time series shapelets were first proposed by Ye and Keogh [39] and there have been optimizations on the initial method to make it faster or more advanced [12,15,18,20,24,27].…”
Section: Background On Shapeletsmentioning
confidence: 99%
See 1 more Smart Citation
“…Dado que inúmeros fenômenos do dia-a-dia podem ser representados por séries temporais, há grande interesse na mineração de dados temporais. Por exemplo, em medicina, foi realizado um trabalho para indução e avaliação de regras do tipo seentão em um banco de dados de pacientes com hepatite crônica, que tiveram seu sangue e urina analisados ao longo de vários anos (ABE; YAMAGUCHI, 2005); em genética, o tempo é um fator importante a ser levado em consideração na análise de expressão gênica (ANDROULAKIS et al, 2005); na botânica, séries temporais foram empregadas com sucesso para classificação de plantas (YE; KEOGH, 2009), tanto pela observação de dados temporais quanto pela transformação da forma do contorno das folhas em séries temporais utilizando um truque de representação; em metereologia, séries temporais são usadas como atributos em árvores de decisão para predição de formação de tornados (MCGOVERN et al, 2007); em um outro exemplo, o comportamento recente do vento é utilizado para se buscar por um comportamento passado similar que possa ser utilizado para estimar quanto de energia eólica poderá ser gerado no momento (KAMATH; FAN, 2012); em entretenimento, séries temporais são empregadas para criação de animações a partir de live-action videos (CELLY; ZORDAN, 2004); em astronomia, séries temporais extraídas a partir da intensidade de luz de estrelas são analisadas para detecção de comportamento anômalos (YE et al, 2008); na indústria de manufatura séries temporais são extraídas de sensores colocados na linha de produção para averiguar a qualidade de produção (PATRI et al, 2014); entre muitos outros domínios.…”
Section: Introductionunclassified