Despite the rapid growth of text-based computer-mediated communication (CMC), its limitations have rendered the media highly incoherent. This poses problems for content analysis of online discourse archives. Interactional coherence analysis (ICA) attempts to accurately identify and construct CMC interaction networks. In this study, we propose the Hybrid Interactional Coherence (HIC) algorithm for identification of web forum interaction. HIC utilizes a bevy of system and linguistic features, including message header information, quotations, direct address, and lexical relations. Furthermore, several similarity-based methods including a Lexical Match Algorithm (LMA) and a sliding window method are utilized to account for interactional idiosyncrasies. Experiments results on two web forums revealed that the proposed HIC algorithm significantly outperformed comparison techniques in terms of precision, recall, and F-measure at both the forum and thread levels. Additionally, an example was used to illustrate how the improved ICA results can facilitate enhanced social network and role analysis capabilities.