In this paper, a continuum damage mechanics model is incorporated into the finite element model which contains a spherical inclusion to investigate damage evolution and predict fatigue life of M50-bearing steel. Quasi-dynamic method, isothermal elastohydrodynamic lubrication analysis and non-Gaussian surface simulating technique are combined to obtain the contact pressure. The damage evolution process of the micro-domain considering roughness texture is simulated and the fatigue life is predicted. The result shows that transverse texture can weaken the damage accumulation due to the strengthening of hydrodynamic effect. The effects of surface roughness parameters on fatigue life are also analyzed. It should be noted that transverse texture, small mean square root value and kurtosis, negative skewness are helpful for enhancing the fatigue life of bearing steel. Meanwhile, the increase of frictional coefficient and radius, negative position of local region will reduce the fatigue life.