2021
DOI: 10.12928/telkomnika.v19i6.19491
|View full text |Cite
|
Sign up to set email alerts
|

Extraction of object image features with gradation contour

Abstract: Image retrieval using features has been used in previous studies including shape, color, texture, but these features are lagging. With the selection of high-level features with contours, this research is done with the hypothesis that images on objects can also be subjected to representations that are commonly used in natural images. Considering the above matters, we need to research the feature extraction of object images using gradation contour. From the results of the gradation contour test results, there is… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2022
2022
2022
2022

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 25 publications
0
1
0
1
Order By: Relevance
“…Pada penelitian ini jenis penelitian yang dilakukan adalah jenis Eksperimen komparatif akan membandingkan dua objek yang berbeda, misalnya membandingkan dua algoritma yang berbeda dengan melihat hasil statistik masing-masing mana yang lebih baik [7]- [10]. Dimana Melibatkan penyelidikan hubungan kausal menggunakan tes yang dikontrol sendiri [11].…”
Section: Metodologi Penelitian 21 Tahapan Penelitianunclassified
“…Pada penelitian ini jenis penelitian yang dilakukan adalah jenis Eksperimen komparatif akan membandingkan dua objek yang berbeda, misalnya membandingkan dua algoritma yang berbeda dengan melihat hasil statistik masing-masing mana yang lebih baik [7]- [10]. Dimana Melibatkan penyelidikan hubungan kausal menggunakan tes yang dikontrol sendiri [11].…”
Section: Metodologi Penelitian 21 Tahapan Penelitianunclassified
“…Deep learning is the latest, modern and robust technique [8], [11]- [13], while the progress and application of deep learning in other domains shows great potential [14]- [17]. The fact, that currently there are at least 40 studies that use deep learning to overcome various agricultural problems with excellent results [18], encourage the writer to prepare this research [19], [20].…”
Section: Introductionmentioning
confidence: 99%