With the development of society, the demand for mineral resources is gradually increasing, and the current situation of decreasing total resources dictates the inevitable interaction between open-pit combing underground extraction (OPUG) in time and space. In this research, we took the Anjialing coal mine in Shanxi Province of China as a case study, and tested the physical and mechanical properties of coal rocks in the laboratory. The similarity criterion was used to build a similar experimental model for the deformation evolution of the slope of the open-pit mine section; the digital scattering method was used to test the influence of the underground mining process parameters on the deformation evolution of the open-pit slope. The results showed that there was an obvious distribution of “three zones” above the mining goaf, namely, a collapse zone, fracture zone, and slow subsidence zone. When the mining face was continuously advanced towards the bottom of the open pit, the supporting stress of the mining face transferred to the side of the open-pit slope. Additionally, large displacement and stress concentration were observed on the slope near the stoping line, which caused the slope body to move along the uppermost part of the slope first, and thereafter along the lower part. Various techniques for slope stability control are discussed, including the optimization of spatial and temporal relationships between open-pit and underground mining, the optimization of mining plans, and the use of monitoring and early warning systems. The results can provide a guide for slope stability control of similar open-pit mines in the process of mining coal resources.