“…Ultrasound-assisted leaching technology has been extensively applied to extract valuable metals from metal ores, such as vanadium-bearing shale [16] , [19] , chalcopyrite [26] , [49] , scheelite [25] , [50] , [51] , zinc oxide ore [30] , [52] , [53] , nickel laterite ore [17] , rare earth ore [29] , refractory gold ore [27] , [54] , [55] , [56] , [57] , [58] , uranium ore [59] , [60] , K-feldspar [31] , copper-bearing biotite [43] , refractory silver ore [61] , eudialyte [62] , quartz sand [63] , [64] , [65] , [66] , [67] , [68] , poly-metallic sulfide ore [13] , deep-sea nodules [69] , phosphorus-potassium associated ore [21] , sphalerite [32] , and magmatic rocks [70] . In addition, ultrasound-assisted leaching has also been developed with successful enhancement in the leaching efficiency of metals from secondary resources, including metallurgical residues [3] , [15] , [35] , [38] , [39] , [42] , [48] , [71] , [72] , [73] , [74] , [75] , [76] , [77] , [78] , [79] , [80] , [81] , [82] , [83] , [84] , [85] , [86] , spent catalysts [33] , [37] , …”