Solutions of anionic liquid ion-exchangers in organic solvents are potentially useful for extracting steroidal glucosiduronic acids from biological fluids and for purifying mixtures of these acids by chromatography. If a glucosiduronic acid is to be isolated in pure form after either of these procedures, it is necessary to separate it from the ion-exchanger. Separation from an organic solution of tetraheptylammonium chloride may be accomplished by extraction with water under the following conditions, which promote transfer of a glucosiduronate to the aqueous phase: (1) an appropriate solvent (diluent) as the organic phase, (2) the presence in the two-phase mixture of an anion such as myristate or dodecyl sulphate to combine with the tetraheptylammonium ion, and (3) an increase of the pH of the aqueous phase in association with the presence of myristate or dodecyl sulphate. The foregoing factors apply also to removal of glucosiduronates from organic solutions of ion exchangers that are hydrochlorides of tertiary, secondary, or primary amines. Since these amines exert progressively less solubilizing effect for glucosiduronates as the pH of the aqueous phase is increased, the conjugates can be released from the organic phase by adjusting the pH to 10 and omitting the myristate or dodecyl sulphate.