This paper argues that an important type of experiment-target inference, extrapolating causal effects, requires models to be successful. Focusing on extrapolation in Evidence-Based Policy, it is argued that extrapolation should be understood not as an inference from an experiment to a target directly, but as a hybrid inference that involves experiments and models. A general framework, METI, is proposed to capture this role of models, and several benefits are outlined: (1) METI highlights epistemically significant interactions between experiments and models, (2) reconciles some differences among existing accounts of experiment-target relationships, and (3) facilitates critical appraisal of inferential practices from experiments.