Purpose: A balance between preserving urinary continence and achievement of negative margins is of clinical relevance while implementary di culty. Preoperatively accurate detection of prostate cancer (PCa) extracapsular extension (ECE) is thus crucial for determining appropriate treatment options. We aimed to develop and clinically validate an arti cial intelligence (AI)-assisted tool for the detection of ECE in patients with PCa using multiparametric MRI.Methods: 849 patients with localized PCa underwent multiparametric MRI before radical prostatectomy were retrospectively included from two medical centers. The AI tool was built on a ResNeXt network embedded with a spatial attention map of experts' prior knowledges (PAGNet) from 596 training data sets. The tool was validated in 150 internal and 103 external data sets, respectively; and its clinical applicability was compared with expert-based interpretation and AI-expert interaction.Results: An index PAGNet model using a single-slice image yielded the highest areas under the receiver operating characteristic curve (AUC) of 0.857 (95% con dence interval [CI], 0.827-0.884), 0.807 (95% CI, 0.735-0.867) and 0.728 (95% CI, 0.631-0.811) in the training, internal test and external test cohorts, compared to the conventional ResNeXt networks. For experts, the inter-reader agreement was observed in only 437/849 (51.5%) patients with a Kappa value 0.343. And the performance of two experts (AUC, 0.632 to 0.741 vs 0.715 to 0.857) was lower (paired comparison, all p values < 0.05) than that of AI assessment. When expert' interpretations were adjusted by the AI assessments, the performance of both two experts was improved.
Conclusion:Our AI tool, showing improved accuracy, offers a promising alternative to human experts for imaging staging of PCa ECE using multiparametric MRI.