2005
DOI: 10.5802/aif.2095
|View full text |Cite
|
Sign up to set email alerts
|

Extremal properties of eigenvalues for a metric graph

Abstract: © Association des Annales de l'institut Fourier, 2005, tous droits réservés. L'accès aux articles de la revue « Annales de l'institut Fourier » (http://aif.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://aif.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pén… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

1
134
0

Year Published

2015
2015
2023
2023

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 84 publications
(135 citation statements)
references
References 1 publication
1
134
0
Order By: Relevance
“…This means that the potential is nonnegative and all strengths of vertex interactions are nonnegative.) The proof extends upon a result of L. Friedlander in [6] which gives a lower bounds for Laplace operators on metric graphs with standard vertex conditions. In our notations this case corresponds to I − = I + = 0.…”
supporting
confidence: 50%
See 3 more Smart Citations
“…This means that the potential is nonnegative and all strengths of vertex interactions are nonnegative.) The proof extends upon a result of L. Friedlander in [6] which gives a lower bounds for Laplace operators on metric graphs with standard vertex conditions. In our notations this case corresponds to I − = I + = 0.…”
supporting
confidence: 50%
“…In this section we follow closely the article [6], where symmetrization technique was applied to obtain estimates for the spectral gap for the standard Laplacian.…”
Section: Symmetrization Techniquementioning
confidence: 99%
See 2 more Smart Citations
“…In practice, the function u * can be constructed as the monotone rearrangement of u on the halfline (see [7,17]), and it is clear that…”
Section: Introductionmentioning
confidence: 99%