Extremal Weight Crystals Over Affine Lie Algebras of Infinite Rank
Taehyeok Heo
Abstract:We explain extremal weight crystals over affine Lie algebras of infinite rank using combinatorial models: a spinor model due to Kwon, and an infinite rank analogue of Kashiwara-Nakashima tableaux due to Lecouvey. In particular, we show that Lecouvey’s tableau model is isomorphic to an extremal weight crystal of level zero. Using these combinatorial models, we explain an algebra structure of the Grothendieck ring for a category consisting of some extremal weight crystals.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.