2020
DOI: 10.48550/arxiv.2001.10741
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Extreme Algorithm Selection With Dyadic Feature Representation

Alexander Tornede,
Marcel Wever,
Eyke Hüllermeier

Abstract: Algorithm selection (AS) deals with selecting an algorithm from a fixed set of candidate algorithms most suitable for a specific instance of an algorithmic problem, e.g., choosing solvers for SAT problems. Benchmark suites for AS usually comprise candidate sets consisting of at most tens of algorithms, whereas in combined algorithm selection and hyperparameter optimization problems the number of candidates becomes intractable, impeding to learn effective meta-models and thus requiring costly online performance… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 3 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?