This paper investigates the role of the materiality of computation in two domains: blockchain technologies and artificial intelligence (AI). Although historically designed as parallel computing accelerators for image rendering and videogames, graphics processing units (GPUs) have been instrumental in the explosion of both cryptoasset mining and machine learning models. The political economy associated with video games and Bitcoin and Ethereum mining provided a staggering growth in performance and energy efficiency and this, in turn, fostered a change in the epistemological understanding of AI: from rules-based or symbolic AI towards the matrix multiplications underpinning connectionism, machine learning and neural nets. Combining a material political economy of markets with a material epistemology of science, the article shows that there is no clear-cut division between software and hardware, between instructions and tools, and between frameworks of thought and the material and economic conditions of possibility of thought itself. As the microchip shortage and the growing geopolitical relevance of the hardware and semiconductor supply chain come to the fore, the paper invites social scientists to engage more closely with the materialities and hardware architectures of ‘virtual’ algorithms and software.