Extreme magnetoresistance at high-mobility oxide heterointerfaces with dynamic defect tunability
D. V. Christensen,
T. S. Steegemans,
T. D. Pomar
et al.
Abstract:Magnetic field-induced changes in the electrical resistance of materials reveal insights into the fundamental properties governing their electronic and magnetic behavior. Various classes of magnetoresistance have been realized, including giant, colossal, and extraordinary magnetoresistance, each with distinct physical origins. In recent years, extreme magnetoresistance (XMR) has been observed in topological and non-topological materials displaying a non-saturating magnetoresistance reaching 103−108% in magneti… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.