Kinetic and mechanistic studies on the formation of an oxoiron(IV) porphyrin cation radical bearing a thiolate group as proximal ligand are reported. The SR complex, a functional enzyme mimic of P450, was oxidized in peroxo-shunt reactions under different experimental conditions with variation of solvent, temperature, and identity and excess of oxidant in the presence of different organic substrates. Through the application of a low-temperature rapid-scan stopped-flow technique, the reactive intermediates in the SR catalytic cycle, such as the initially formed SR acylperoxoiron(III) complex and the SR high-valent iron(IV) porphyrin cation radical complex [(SR(*+))Fe(IV)=O], were successfully identified and kinetically characterized. The oxidation of the SR complex under catalytic conditions provided direct spectroscopic information on the reactivity of [(SR(.+))Fe(IV)=O] towards the oxidation of selected organic substrates. Because the catalytically active species is a synthetic oxoiron(IV) porphyrin cation radical bearing a thiolate proximal group, the effect of the strong electron donor ligand on the formation and reactivity/stability of the SR high-valent iron species is addressed and discussed in the light of the reactivity pattern observed in substrate oxygenation reactions catalyzed by native P450 enzyme systems.