Core-electron excitation spectra are used widely for structural and chemical analysis of materials, but interpretation of the near-edge structure remains unsettled, especially for semiconductors. For the important Si L(2,3) edge, there are two mutually inconsistent interpretations, in terms of effective-mass excitons and in terms of Bloch conduction-band final states. We report ab initio calculations and show that neither interpretation is valid and that the near-edge structure is in fact dominated by short-range electron-hole interactions even though the only bound excitons are effective-mass-like.